Jetprop: Switzerland to USA Ferry Flight

Tom Thomason learned of Elie Vannier’s VERY nice Jetprop (N43CH) that was for sale, and promptly began a pursuit to purchase that ended with our going to Elie’s hometown of Lausanne, Switzerland.  Decked out with great avionics, great paint, and stellar maintenance history, we knew this airplane was going to be nice.  But…the best part of Elie’s Jetprop is the one-of-a-kind ferry tank (designed by John Mariani and installed by Malibu Aerospace) that allows for 66 additional gallons of fuel.  An incredibly simple and brilliant system, this Jetprop has more range than any other Jetprop on the planet.  Being a savvy and super-knowledgeable Jetprop owner, Tom knows a good PA46 deal when he sees one, and bought N43CH.

Tom came to JSO to start our trip together and some friends flew us to Dallas in their nice Beechcraft Bonanza.  We boarded the long flight from DFW to London, and were pleasantly surprised to receive upgrades to bulkhead seats together (with no one sitting next to either of us).  I’m not sure how Tom did it, but he slept the entire flight to London, while I watched two movies and read part of a book (yes, I paid for this later by being VERY tired on the ground!).  We arrived in Geneva, and met Elie face-to-face…which started a good relationship with a great man.

We drove to the GA-side of the Geneva airport and boarded N43CH for the test flight.  Realizing very quickly that this was one super-nice Jetprop and confirming that everything worked properly, the test flight quickly turned into a sight-seeing tour of the Swiss Alps.  If you’ve never seen the Swiss Alps, don’t go to your grave until you do…it’s unquestionably one of the most awe-inspiring places on earth.

Swiss Alps in the Jetprop

Some buy-sell relationships turn adversarial fairly quickly, but this sale was one that can only be described as “mutually beneficial”, friendly, and professional.  We gathered quickly that Elie was a man of tremendous character and cares for aviation to same degree that we do…the feelings were mutual.  For the next day Elie was a tremendous host and showed us the best of Lausanne.  We are indebted to Elie, certainly calling him a friend.

Our departure from Lausanne was normal and the beauty of the Swiss Alps faded to a white undercast below.  Although the weather in ELLX (Luxembourg) was forecast to be acceptable, when we arrived it was downright terrible with RVR being 100m.  We went to our alternate of Liege, Belgium.  The weather was CAVOK (Clear Air, Visibility OK) and we landed uneventfully.  But, this is where the logistical troubles began.  Liege is a huge airport, but it serves big airplanes and mainly cargo airplanes.  The service was terrible, the communication horrible, and we had trouble after trouble with everything from finding a toilet to filing a flight plan to just getting fuel.  We will remember our experience at Liege as one of the worst seen in my 25 years of flying….yes, that bad.  We finally got a modicum of a clearance and (although not understanding every aspect of the clearance) departed for Belfast, Northern Ireland. We clarified the clearance as we climbed and soon were in the smooth air over the English Channel.  Strong winds prevailed, but they were crosswinds.  We popped out of a high overcast on descent and were treated to the green landscape of Northern Ireland.  Despite being February, it was remarkably green and lush. The FBO in Belfast, Northern Ireland treated us very well….I’ll plan to go there again on another trip.

We encountered strong winds along the entire flight to Iceland, and thankfully they were quartering winds that netted a small tail wind component.  Check out the crosswind in the pic below!

We saw Iceland from afar (due to unusually clear weather) and noticed the immense white from the snow.  We didn’t know it when we arrived, but Iceland had a record snowfall on the nighttime prior to our arrival.  There were over 51cm of snow in a 4 hour period.  Literally the entire island was covered in snow….and this is unusual…Iceland is normally not “icy”.  Thankfully, the ground crew cleared the runway of snow quickly and we were the first airplane to arrive to a winter wonderland on a Sunday morning.  Since Greenland is closed on Sunday, and because we arrived around noon in Iceland, we had the better part of the day to spend sloshing around Iceland.  And…a slosh it was…snow was everywhere, but the temperature had risen to 35F.  So, on our walk through downtown Reykjavik we ended up wading through a mix of really slippery ice and melting cold water.  But…Reykjavik is one cool town, and it was fun to just be there.  The locals were excited to see the snow, too, and it seemed that the whole town came outside to play in the snow on a “warmer” no-wind day with piles of snow everywhere.

Reykjavik from the air

The weather was 25F upon our departure on Monday morning, but there was no wind.  Advised that we “must get weather in Narsarsauq before leaving” and because the weather forecaster in Greenland does not get up early, we arrived at BIRK a little later than normal (9am).  We learned that the weather in BGBW was acceptable, but strong winds prevailed and the weather was going to get worse as the day progressed.  We got extra fuel in the installed ferry tank (although we ended up not needing the additional fuel!!) and took off into a perfectly clear blue day.  We checked the ferry tank operation and otherwise had an uneventful flight to the eastern coast of Greenland.

Narsarsuaq (BGBW) is on the western coast of Greenland nestled in the end of a long fjord.  There’s enough well-known aviation-lore for this historic airport that is known by most pilots, so I won’t belabor the “toughness” or “danger” that can be found at BGBW.   I’ve been here many times before, but this day was to test my ability as an aviator.  As we came over the Greenland Icecap we were made aware of a new SIGMET that included BGBW…severe turbulence below 10,000ft.  I had not read about this prior to leaving BIRK, but the SIGMET was right…there was turbulence.

Tom is a great writer, and here’s his perspective of Narsarsuaq:

“The most impressive place we landed was Narsarsuaq. It  had an almost medieval  quality. Tall dark granite cliffs partially covered in low thick vegetation giving the appearance of a great castle.  Surrounded by high snow-covered mountains and a huge moat of  angry grey green sea filled with whitecaps, dark foreboding torn clouds were racing down from the mountain, firing cannons of turbulent air that rocked our ship and incessantly tried to push us back or throw us into the sea.   Even after landing, the taxiways had a doorkeepers riddle of ice and strong winds that we had to figure out before we could finally pull up to the entrance to the FBO of Narsarsuaq.
However, once we got there the line crew was excellent and the young woman “NaSu”, a native Greenlander was very pleasant and helped us immensely as we made  all the arrangements for our next flight to Goose bay. She even served us smoked lamb, that she had made herself from the herd that her husband owns on their farm. The tower operator had many stories of flying sea planes and helicopters in Greenland during his past 30 years. A very fascinating Swede who loved the land. Leaving Narsarsuaq was a chance for the Jetprop to really show its capabilities.  Climbing at a high “angle” of ascent, allowed  us to clear the surrounding mountains on the departure procedure. They were totally hidden to our eyes by clouds, but revealed to us by synthetic vision on the G500…” Tom Thomason

The weather was forecast to only get worse, and if we delayed too much longer we’d have to stay in Greenland a few days.

Greenland from the air


Strong winds at Narsarsuaq

I called Travis Holland for some wisdom about departing.  As a trusted North Atlantic veteran, I knew Travis would shoot straight with me about the tough weather.  I was nervous about departing back into the wind, but sensed that the only real threat was the strong surface winds.  If they subsided, I was comfortable.  By the grace of God, the winds did subside…if you call a 35kt wind subsiding.  After preparing for the flight, we jumped at the chance to leave BGBW and took off for Goose Bay (CYYR).  The visibility was predominantly 5 miles or better, but areas of heavy snow dropped the visibility down to 1/4 mile or less. The Synthetic Vision in Tom’s Jetprop made us very comfortable climbing above the amazingly rugged and beautiful Greenland below. The powerful Jetprop made short work of the climb and we were at FL260 in no time, battling the HUGE crosswinds at the upper-levels.

Over the Labrador Sea


Eastern Coast of Canada with huge winds pushing the ice out to sea

Tom and I both marveled at the beauty of the Labrador Sea.  The ice floes and immense amount of white below was laced with slivers of blue that revealed the depths of the water.  This was no place to have airplane problems, and we carefully calculated fuel, made appropriate radio calls, and monitored the airplane systems.  The Jetprop is singularly outstanding…easily one of my favorite airplanes…and I was happy to have this Jetprop as my steed.  With the mighty PT6 up front I never worried about the danger that lurked below.  We landed at Goose Bay (CYYR) in a strong wind (35kts) about 30 degrees from the right.  Tom again showed off his mastery of the crosswind landing and we were soon forced again to deal with the greatest threat of the day…taxiing on the slippery ice.  The ramp at Goose Bay was nothing more than a sheet of ice.  We crept along at a snails pace into the parking spot feeling the wheels slide every now and then.  To confirm our worries about the slippery ice, there was a big Dash-7 (Dehavilland Airplane, big…4-engines) parked on the ramp. We later learned that (while sitting chocked on the ground) a gust of wind pushed it along the ice and slammed it into another vehicle.  The slipperiness of the icy ramp was the real-deal, and I’m glad we got out of there with no incidents.



The third leg of the trip seemed to go on forever.  We had already flown 7+ hours that day, and we had another 4 hours staring us in the face.  The weather was favorable (smooth, clear, nice view of the ground), but the winds were certainly not…we had 70+ knots right on the nose the whole leg.  Interestingly, to fly from CYYR to CYMX (Montreal) the St.Lawrence River was underneath us seemingly the whole way.  We marveled at the immensity of the St. Lawrence River overall, and the isolation of the more northerly portions of that river.  Northern Canada is a place of incredible beauty, but also few people.  It is an unmolested wilderness that is truly beautiful.  We finally landed in CYMX (Montreal, Canada) just after dusk, and settled into a long, welcome sleep at the hotel.

Tom’s one time to relax in the back…he piloted 99% of this ferry flight

The next morning found us departing to KPTK (Pontiac, MI).  We spent most of that flight in solid IMC and a huge headwind.  The US Customs experience was pleasant and short, and soon we refueled and departed for the second leg of the day…KEVI, Indiana.

Upon landing in Michigan

We got lunch at a local sandwich shop and enjoyed being back in our own culture.  We wanted to get back in the air quickly as we knew we were going to face headwinds.  With 90 knots right on the nose, the forecast was right.  It took nearly 4 hours to fly from Indiana to Texas, and we were both tired upon landing.

At the end of the trip at KJSO, Cherokee County Airport, Texas

Tom stayed the night in my “Pilot Bunk Room”, and I went home for the evening.  The next morning Tom departed for his hometown in New Mexico.  As I reflect upon the trip, I’m continually amazed at the Jetprop.  Through all of the difficult weather the Jetprop (and PT6 up front) never missed a beat.  Also, I can’t help but think of how nice it was to fly with Tom.  Switzerland to Texas is a LONG way to sit in a small environment with one person, but Tom made it enjoyable the entire route.  It was a great experience that I hope to do again.  Congrats on your purchase, Tom!

Posted in Ferry Flights | Tagged , , , , , , , | Comments Off on Jetprop: Switzerland to USA Ferry Flight

UflyMike Harmony Headset

I’m a “headset snob”.  There…it’s out.  Guilty as charged.  I have used all of the various headsets in the aviation marketplace and I like to use my own headset, and I use the UflyMike Adapter exclusively (  Even if a customer has one of the other premium brands already fitted in the right seat, I’ll bring my own UflyMike and use it…and it’s not because I’m a “clean freak” or a hypochondriac.  I simply think the noise-cancelling headset is one of the BIG improvements in aviation in my generation and I like to use only the best.  Right now, the UflyMike is the best IMO.

As most know, I only write Articles for products or services that I actually like and use.  Such is the case with the UflyMike Adapter. I once flew a ferry flight from Africa (in 2013) with a pilot and he had a Bose QC-15 headset with the UflyMike Adapter.  I tried it and was hooked.  I now own 10 separate sets and use them in whatever airplane I fly, and offer them to the people that ride in the back seats.  UflyMike outflanked all of the big names in the headset market by innovation and attractive pricing.  They built a better mousetrap.

But…Bose threw a curveball at UflyMike in 2015 by discontinuing the QC-15 headset in favor of the QC-25.   The old UflyMike adapter does not work with new QC-25 headset.  So, UflyMike had to go back to the drawing board to create the “Harmony Adapter” for the QC-25.  And, the transition must have been terrible because it took FOREVER for them to finally bring their new product to the marketplace (it was supposed to come out in Spring 2016 and I just got my headset in January 2017).  I’m betting that Bose engineered the QC-25 to be VERY difficult to adapt…certainly the UflyMike adapter hurts the sale of the WAY overpriced Bose A20 headset ($1200+ for one headset).  And, Uflymike needed to correct some minor problems/glitches that existed with the QC-15 adapter.  It’s taken Ufly Mike WAY too long to get the Harmony to the marketplace, but the wait was worth it.  I’ve had the Harmony for about 3 weeks (as of this writing) and have flown about 30+ hours so far (I fly over 1000 hours each year, with 95% of those hours with a UflyMike around my ears).

The Bose QC-25 headset is not a huge step-up from the QC-15.  Both are light and comfortable and cancel the noise well.  So, the advantages for moving up to the QC-25/Harmony is all about the improvements to the adapter.  And, there’s plenty that different with the Harmony Adapter…

  • Thinner cord: The Harmony cord is thinner and less bulky.  Not a big deal, but noticeable.
  • Separate volume controls:  The old adapter had a 3-position switch that was acceptable, but not ideal.  The Harmony has separate volume for each ear via a rheostat  on the box on the cord.  Being forthright, the separate volume controls are not important to me, but the fact that there is a volume control is important.  I’ve had several instances where the volume control got caught between my leg and the sidewall (for instance) and changed the volume in flight.  Not a big deal, but…
  • Shorter mic boom, better mic: The mic boom is noticeably shorter, used by placing the mic on the edge of the mouth, not directly in front of the lips.  It takes a few minutes to get used to, but I’ve found it better (especially if you want to drink from a bottle, hehe)
  • Microphone sensitivity control: This is a neat feature that dovetails nicely with the shorter mic boom.  Once in flight the mic gain can be changed to work with the amount of white noise.  It’s sort of like adjusting the squelch, but better.
  • Aux input: I use the AUX input regularly, and the input is now on the control box (on the cord).  I like this installation better than the old version.
  • Dead Battery: When the battery ran out of juice in the QC-15 Adapter, the headset stopped working.  With the QC-25/Harmony a dead battery simply means the noise cancelling stops.  You can still use the headset.  This is a MAJOR upgrade IMO.

Why do I like the UflyMike as opposed to other aviation headsets?  Here’s my short list:

  • Poor competition: The big boys in the market (Bose, Lightspeed, David/Clark) either have a REALLY crappy product (David/Clark), are super expensive (Bose), or have forgotten their modest roots and have a history of poor service (Lightspeed).  Any of them could have dominated the marketplace had they provided a great product at a great price with great service, but each chose to leave one of the legs of the 3-legged stool out of the equation.
  • Price: You can buy a Bose QC-25 for about $300, and a UflyMike Adapter for about $300.  So, an all-in price of $600 gets you a great product.
  • Low profile headrest: The top of both the QC-15 and Qc-25 headsets are VERY low profile, and that works great for my 6’4″ frame in a small cockpit.  I simply cannot wear a headset that has a big, tall foamy pad on top for I constantly hit the top of the fuselage.
  • Small company: Most of the great innovations in any market occur at small to medium sized companies.  UflyMike has a neat history and has (so far) not forgotten their roots.  They are all about innovation and building a better mousetrap…they have 3 legs on their stool.
  • History: I’ve got literally 3000+ hours flying with the UflyMike headsets, and I appreciate the fact that they are robust, durable, and always work.

So…yes…go buy the Bose QC-25 Headset with a UflyMike adapter.  I think you’ll REALLY like it!

Posted in Stuff I use... | Tagged , , , , | Comments Off on UflyMike Harmony Headset

SL 1204 and the PA46 Windshield

You know the old joke…”What’s the landing light used for in a single-engine airplane with an engine failure at night?”  Answer: “You turn it on when you near the ground…if you don’t like what you see, turn it off!”  A weird parallel can be made with the windshield heat and the PA46.

Suffice it to say, the Windshield Heat situation on the PA46 has evolved into a real mess.  Without a doubt, the operation of the windshield heat has been the “elephant in the room” on just about every purchase/sale of every PA46 for as long as I can remember, but now Piper recently released Service Letter 1204 which was supposed to clear up the muddy water.  Well, it arguably cleared up the water for there’s now little doubt about the condition of a windshield.  But where we can now clearly see, few are liking what they see.  And, we cannot “turn off” SL 1204.  We are going to have to live with SL 1204 and it’s going to cost money.  Let’s go back into history and discuss the windshield heat from day-one…

Nearly every PA46 in the fleet is FIKI (Flight Into Known Icing) equipped.  There are a few early Malibu’s and a few recent Matrix versions which did not come from the Piper factory with all of the icing systems (most non-FIKI PA46’s have no wing boots), but the VAST majority of PA46’s are FIKI-equipped.  In order to be FIKI-equipped, a PA46 must have (among other requirements) windshield heat.

The early Continental Malibu’s came from the factory with a Hot Plate.  I personally dislike the Hot Plate as it destroys the forward visibility of the pilot.  There are still plenty of 1984-1988 Malibu’s with the Hot Plate, and some of them still work, but many don’t.  Today, there’s no replacement or repair for the early Hot Plate, so if it fails the owner is left with the option of removing it from the airplane (and placarding the airplane with “Flight Into Known Icing Prohibited”) or upgrading to a Glass Windshield.

In 1989 Piper came out with the Mirage installed with a “Plexiglass Windshield”.  This windshield had lots of failures and became known as the windshield that “either worked really well” (and still works), or that would frequently experience “infant mortality”.  There are still some Plexiglass Windshields in the fleet, but there are fewer and fewer every year.

In 1995 Piper began installing the (currently used) “Glass Heated Windshield”. made by PPG.  This windshield is found on all PA46’s that come from the Piper Factory (Meridian, Mirage, Matrix) after 1995 and is the only windshield that can be purchased today.  So, if your Hot Plate windshield or your Plexiglass Windshield were to fail (and you want to be FIKI equipped), you will have to buy the Glass Windshield.

Before Service Letter 1204, to check the operation of the heated windshield (glass or Plexi), the POH for the PA46’s mandated that the amp draw be checked.  Basically, you’d make sure only one electrical source (one alternator or generator) is running and note the amp reading before and after turning on the windshield heat.  A new windshield should draw 19 amps on LOW and 24 amps on HIGH, but Supplement 2 of the POH advises a “preflight check” of the windshield be accomplished with the pilot seeking an amp draw above 13 greater in LOW and 23 in HIGH (See Section 9, Supplement 2 of the Mirage POH).  If it is less than 13, then it’d be in the “gray area” where lots of interpretation was required.  The windshield has lots of very small wires that act as heating elements embedded in the windshield.  When these wires get broken (for now unknown reasons), the electrons don’t flow across that portion of the windshield and the amp draw goes down.

To help clear up the confusion, Malibu Aerospace (led by Chad Menne) creatively began using infrared images to determine the operation of the windshield, and other maintenance shops and instructors (including me) followed their lead.  With an infrared camera it is VERY easy to see exactly where the windshield is heating and where it’s not heating.  I think the Infrared Camera is the BEST way to test the operation of a heated windshield. Although VERY subjective, if the amp draw was lower than 13, the pilot/owner/mechanic could use the Infrared Image decide if the windshield heated up enough area for the pilot to see in a icing event, or if the windshield required replacement.

The catch is that the windshield replacement is VERY expensive.  As of this writing, a new windshield costs $21k to purchase and the installation is laborious, often pushing total replacement cost up to $30k.  And…to add insult to injury, if the airplane is older, it is often prudent to replace the copilot windshield as well.  The CP windshield adds just a little more labor to replace both and if there are scratches on the co-pilot side, then the cost for an entire replacement can top $35k.  If you own an early “Hot Plate” Malibu and require replacement, then there’s more bad news…the wiring and windshield controller is different, there’s new switches to install, and new cockpit indications are required.  A Windshield replacement in an early Malibu can push $40k very quickly.  Bottom line…a windshield is expensive!

We’ve trudged on for years in the gray area with nearly all of the “quality” PA46 shops signing off annuals with “less-than-optimal” windshields because the Maintenance Manual does not offer any criteria for checking the Windshield Heat…it merely says to check to see that there was an amp draw…any amp draw.  Maintainers follow the guidance of the Maintenance Manual, not the POH when performing maintenance.  Most owners that live in the southern USA would ride along for years with windshields that would draw FAR fewer amps that was mentioned in the POH.  Most northern-based pilots that often flew IFR in the cold clouds would opt to have it replaced, as icing would be a frequent visitor in flight.

At sale, the wise buyer of any PA46 would include “Airworthiness Items” as a “seller-paid-item” in the Purchase Agreement.  If the amp draw was discovered to be less than 13 amps in the prebuy, the Buyer would press the Seller to buy a new windshield (this is the gray area).  That $30k “elephant in the room” would often result in hurt feelings, empty pocketbooks, and sometimes it would stop the sale entirely because that windshield was “in the gray area”.

In the Fall of 2016, Piper issued Service Letter 1204 to help “clarify” the Windshield Heat issue.  Basically, the resistance of the windshield is now tested with an ohm meter. Note, this is not a home-toolbox ohm meter found at your local Auto Zone…it’s a 4-terminal ohm meter that is highly accurate, required because of the low resistances being measured. And…make no mistake…the operation of the ohm meter should not be left to rookies.  There’s simply too many variables when testing such low resistances.  I suspect there will be LOTS of windshields replaced because dealing with such low resistances is tricky business…a corroded connector can move the needle over the line, for example.

But…assuming a mechanic knows what he’s doing, and reads with the right equipment…if the reading is within limits specified in the SL, then everything is OK.  If not, then the SL declares that the windshield “Must” be replaced.  Not “suggested”, not “should”…it says “Must”.  And, it advises that the POH and Maintenance Manual are to be revised to eliminate the discussion of the amp draw (but that has not happened as-of yet).

Here’s the kicker…SL’s are NOT mandatory.  Even though the SL uses the word “Must”, no owner/pilot MUST do anything that a SL illustrates.  If the FAA wants to mandate an action, they will issue an Airworthiness Directive (AD).  No AD has been issued on the PA46 windshield.  So, the SL is currently the best written guidance for a maintenance shop to use, but a responsible owner must carefully consider prudence when deciding to write that $30k-$40k check, and right now replacement is NOT mandatory if the windshield fails SL 1204.

My big issue with the new SL is that the allowable resistance range for what is an “acceptable windshield” is representative for a NEW windshield.  I’ve seen LOTS of windshields that had a slightly low (but decent) amp draws and looked just fine through an infrared camera, but would fail the resistance check.  If I owned a PA46 and planned to keep the airplane for a while, I’d view the windshield issue with a different lens…I’d consider the amp draw, check out infrared images, look at the resistance, and also consider where I lived and how often I anticipated needing the windshield.  In Texas, we need the windshield heat rarely…I can count the number of times I’ve turned on the Windshield Heat in the last decade on one hand.  But, anyone that operates anywhere defined as “northerly” probably uses the windshield heat frequently.  Again, prudence must be considered.

At sale though…there’s no holds barred.  If the Seller has been nursing a weak windshield for a few years, you can rest assured they do NOT want to pay $30k at sale.  And, consequently, the Buyer will be VERY interested in making sure the windshield works IAW Service Letter 1204.  Who will win?  Answer: whoever has the most knowledge and whoever CAREFULLY considers the verbiage of the legally-binding Purchase Agreement.

If an airplane is about to go on the market, I recommend a Seller consider the condition of the Windshield Heat closely and be prepared to discuss it PRIOR to signing the Purchase Agreement (PA).  If I were the Buyer, I’d want to know the condition of the windshield and also know the language of the PA.  If the windshield doesn’t work, then the Seller should disclose this early so that discussion can ensue.  If it absolutely does work, then this is a good selling point.  If the windshield is going to be in a “gray area”, then I suggest the Buyer and Seller work out a “win/win” scenario.  Usually the purchase price is lowered to a fair value, and then the windshield heat is eliminated from consideration as an “airworthiness item” on the prebuy.

If a Buyer or Seller walks into a transaction without knowledge of the windshield heat, the chances are VERY high that person is going to be be VERY disappointed at sale.

One thing is for sure…PPG (manufacturer of the heated windshield) is smiling widely.  There’s going to be LOTS of windshields replaced in the near-term as maintenance facilities will undoubtedly find LOTS of windshields that will have resistance measurements outside the parameters illustrated in Service Letter 1204.  My hope is that PPG will spend some serious energy determining why the PA46 Glass Windshields have such a poor record of performance and produce a windshield that doesn’t fail so frequently.  I fly LOTS of other pressurized, turbo-charged, high-altitude airplanes and those rarely have the repetitive problems that are found on the PA46 heated windshield.

For the time being, knowledge is key…as in any transaction, “he with the most knowledge usually wins”.  It’s a $30k question…be sure to position yourself well in the marketplace.  There’s going to be a LOT of $30k checks written by PA46 owners in the near future…be sure you’re not one of them.

Posted in PA-46 Airframe systems | Tagged , , , , | Comments Off on SL 1204 and the PA46 Windshield

Texting while taxiing…

Texting while driving...

Texting while driving…

Need I even print a word?  Is there anything that needs to be added to make this any clearer?  Bottom line…texting while taxiing can cost you dearly.

And, it’s not just texting.  During recurrent training, one of my pet peeves is to see pilots fumbling with the avionics while taxiing.  I’m going to bet that a full 50% of those that come to recurrent training try to set up entire clearances in the GPS while taxiing to the runway.  99% of the time it works just fine, but on that one day that the wind catches the tail and you keep your head “inside” for just a few seconds longer, a REALLY bad incident can occur.

No...the PA46 is NOT a good soft-field airplane!

No…the PA46 is NOT a good soft-field airplane!

In the case of this Meridian mud-riding event, nothing was damaged except for an ego.  But, had this pilot (who shall remain nameless) been going just a little faster a wing-bending event could have occurred.

If you are “one of those guys”, I’m going to challenge you to stop the airplane, do whatever needs to be done “inside the airplane”, and then continue taxiing.  The time saved is minuscule, but the damaged airplane can be super-costly!

Posted in Flying Techniques | Tagged | Comments Off on Texting while taxiing…

Royal Turbine Duke

I recently had the opportunity to be a part of the sale (and training) of a BE60T Royal Turbine, or “Royal Duke” (what we called it).  The experience allowed me to gain significant flight time in the Royal Duke, so I thought it would be beneficial to give a “PIREP”.

Royal Duke

Royal Duke

The piston Duke was considered by many to be a great airplane plagued with terrible engines.  I’ve never flown a piston Duke, but the chorus of complaints in the marketplace is the same…the piston engines were maintenance hogs, expensive, and unreliable.  So, Rocket Engineering did what they do best…take a great airframe and mount a great engine (PT6) on the front.  They were the first to install the PT6 on the PA46 airframe to create the Jetprop (which is a wildly successful STC with 305 conversions (to date) in the air), and the Royal Duke was a natural conversion candidate too.

Sleek and fast-looking...

Sleek and fast-looking…

Bottom line forward…I really like the Royal Duke!  It has absolutely stunning performance and handles well.  There’s a definite “niche” in the marketplace for a Royal Duke, but it’s not for everyone.  Here’s my analysis…

Overall Performance:  Stunning, spectacular, incredible…those are common adjectives to describe the Royal Duke.  The excess power translates into performance that is much like any vehicle that has high power-to-weight ratio.  It’ll accelerate rapidly, decelerate rapidly, and go fast in between.  This is one of the best reasons to buy a Royal Duke!

Ground handling:  The adjustable rudder pedals are a nice touch that really does make the Duke ergonomically better.  Turns are easy and the turning radius is similar to a PA46, meaning that it turns nicely in a tight area.  The steering is mostly “positive and smooth” and there is no propensity to dart away from the intended path.  I found myself rarely using the brakes for steering in the Duke (and I use them fairly often in a PA46).

Takeoff and early Climb Performance:  This is where the Duke really shines.  Whenever I would takeoff in the Duke the people at my airport would stop and come see the airshow.  The takeoff roll can be super-short…easily less than 1500′, and probably much less.  Acceleration is brisk, even downright startling for the uninitiated.  Rotation comes quickly and the climb rate increases quickly.  At near gross-weight on a 85F day the Royal Duke will easily climb at 3500FPM and it’ll probably do much better than that if it is lighter or cooler.  While the RATE of climb is impressive, the ANGLE of climb is even more impressive.  From my 5000′ runway, I could easily start the takeoff roll at one end of the runway and be at 1600′ AGL when over the departure end of the runway.  It is a fabulous short field airplane, for both takeoff and landing.  The takeoff performance is so good that I migrated to departing with less-than-full power habitually, simply not needing the additional power.  I would slowly advance the Power Lever to about 200 lb/torque below the redline and then finesse the additional power in the climb once things had settled down.  This way the airplane accelerates less quickly and is much more controllable.

Cool winglets...

Cool winglets…

Climb: At max climb, the Royal Duke will climb well above 3000fpm, but I found myself climbing out at 2500fpm routinely.  With the lesser climb rate I had a lesser pitch attitude and a higher airspeed (150-160 KIAS).  This seemed to be the “sweet spot” for the climb in the Royal Duke.

Cruise: The Royal Duke will cruise at 290KTAS easily, and will do a little better than that when the temperature is ideal.  The Janitrol Heater does a fine job of keeping the cabin warm, and you’ll use it regularly since the normal cruising altitude is “as high as possible”. The Duke’s cruise speed is fastest at higher altitudes, and there’s rarely a time when you’ll select any altitude other than “as high as possible”.  The Jetprop is flown with the same mental paradigm.  Cruise fuel flow is almost always 32-33 gallons per side (64-66 gallons/hour total).  If a lower altitude is selected, the cruise power usually ends up being less, and it always ends up being very near 32-33 gallons/hour.

Descent:  Much like the Jetprop, the Royal Duke can descend very rapidly with the power pulled back.  So, the savvy pilot will stay at high altitude as long as possible and then throttle-chop for the airport.  The airspeed will be near the barber pole for much of the descent.  Conducting my own personal “test”, I once remained at 20,000MSL until I was 40 NM from the airport (JSO, on a nice clear day).  I was easily able to descend so as to approach the runway without being uncomfortable.  If the power is pulled back and the drag items deployed, the Royal Duke will descend super-fast.

Landings:  The approach is easily flown, and configuring for landing just requires gear, flaps, and the “other items” on the checklist. I have a saying that I believe to be true about a PA46…”it’s an easy airplane to land safely, but a hard airplane to land smoothly every time”.  The stiff gear in a PA46 will rarely garner “smooth landing awards”.  Not so in the Duke…the Duke’s landing gear is much more forgiving and smooth landings are easily found.

Rugged:  People that love Beechcraft products can testify that most Beech’s are rugged.  None are the fastest, none are the fastest climbers, but all are solidly built airplanes.  The Duke is no exception.

Appearances:  The Royal Duke is stunningly beautiful on the ground or in the air.  It has sleek lines and looks unbelievably fast.  I’ve always thought a Duke was a cool looking airplane, and the Royal Duke is simply gorgeous.  The example I flew was particularly pretty.  One thing is for sure…you’ll turn heads on the tarmac…it seems everyone’s heard of a Royal Duke, but there’s not many that have seen one up close.  It’ll clear out the FBO faster than any other production airplane I’ve flown.

Here's where the muscle is found...

Interior:  The door opens differently than a PA46, but it is quite easy.  Getting into the Duke requires no particular special mobility, and once inside the space available is nearly identical to the PA46 family.  The space up front (in the cockpit) is similarly sized to the PA46.  I’m 6’4” and I fit just fine.  It’s a tad bit easier to get in the front of a Duke than a PA46 since the spar is slightly shorter in a Duke.  Once in the seat, the Duke is quite comfortable.  The seat moves down as the seat moves back, which I found to be really neat. Both from seats recline nicely.  For a tall guy (like me) the seat goes fully back and fully down, and there’s plenty of room in a Duke.  Plus, the rudder pedals are adjustable, making the Duke slightly better.  I like the ergonomics of the rudder pedals on the Duke, as it’s much easier to keep your feet off the brakes in normal operation.

Easy access through the left side door

Baggage Space: The Royal Duke has about as much baggage room as a PA46, at least the PA46’s that have a nose baggage area (not a Meridian).  But, the majority of the baggage area is found in the nose.  With a HUGE forward area and a high weight limit, the natural place for everything is up front.  That’s good because the baggage space inside the pressurized cabin is paltry compared to the PA46.  I actually like this arrangement because the nose area provides easier access.



Noise level: I found the noise level to be comparable to a turbine PA46, which means it is quite low.  Passengers can converse amongst themselves without a headset, but the pilot will definitely want a headset for communication.

And then there’s the drawbacks…not everything is ideal on the Royal Duke, but the non-shiny aspects of the Duke are not terrible…and there are only two that come to mind:

Max Cabin Differential:  At 4.7 Max Diff, the Duke is lesser than the 5.5 Max Diff found in the PA46 fleet.  This translates into a higher cabin altitude at higher cruising altitudes.  For instance, when a Jetprop is flown at FL260, it’s cabin is going to be around 9,000FT…the Royal Duke will have a cabin altitude of about 10,300ft.  Is this a HUGE deal?  No…but, I sure wish that Beech would have made the Max Diff higher (in fact, I wish they had made it higher in many of the other Beech aircraft…especially the 100 series and 90 series).  It’s a sold, robust system that will seldom if ever fail you, but the Max Diff is lower than desired.

Autopilot: I love the KFC-150 Autopilot (found in MANY PA46’s) and call it an “oldie, but goodie”.  The KFC-200 (found in the Royal Duke) is also an “oldie but goodie”, but it has a few differences.  Basically, the KFC-200 has the benefit of providing a “Go Around Switch” on the Power Lever (huge bonus) and the detriment of NOT having Vertical Speed (V/S) Mode.  In just about every other way the two are flown the same.  I fly the KFC-150 often in Pitch Attitude Mode in climb (I’ll bet 90% of PA46 pilots don’t even know their KFC-150 has a Pitch Attitude Mode), so it was not difficult for me to use Pitch Attitude Mode in the Royal Duke.  But, for most newbies, it’ll take a few hours of flying to get comfortable.  But…the Go-Around Mode is a HUGE improvement to the KFC-150.


Transitioning to the Royal Duke:  If you have experience in a Jetprop, then the transition to a Royal Duke will be super-easy.  Rocket Engineering’s approach to the cockpit-layout, engineering of the engine and components, and operational flow is nearly identical.  And, this is a HUGE compliment!  Both the Jetprop and the Royal Duke are easy-to-fly conversions that are VERY well designed.  If you are transitioning from any piston airplane, you’ll have a tad bit longer transition simply because you’ll have to get used to managing excess horsepower.

Maintenance: Unlike the Jetprop, the Royal Duke does not have an “Annual Inspection”, per se.  It has “100-hour inspections” that are done either “every 100 hours” or “annually”.  The 100-Hour inspection is not a overburdening inspection (and there’s no “phase inspections”), so the maintenance costs should be reasonable.

As you can tell, I’m a huge fan of Rocket Engineering and their turbine conversions.  The Royal Duke, although not perfect, is a great conversion that will find an audience with the owner that is efficiency-minded, wants to go fast, and doesn’t want a big-footprint airplane.  I am associated with about 25 aircraft sales per year, and I got more phone calls with the Royal Duke than I did with just about any other airplane I’ve sold (and this airplane never made it on Controller!!).  There’s definitely LOTS of interest in the marketplace, and I think there will be more Duke’s converted as time progresses.  It’s certainly a “safe bet” for purchase as there’ll always be the owner/pilot that wants the most “bang for the buck”.


Posted in Neat aircraft, Thinking of buying a PA-46? | Tagged , , | Comments Off on Royal Turbine Duke